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Autism Spectrum Disorder (ASD or autism) is a phenotypically and etiologically 
heterogeneous condition. Identifying biomarkers of clinically significant metabolic 
subtypes of autism could improve understanding of its underlying pathophysiology 
and potentially lead to more targeted interventions. We  hypothesized that the 
application of metabolite-based biomarker techniques using decision thresholds 
derived from quantitative measurements could identify autism-associated 
subpopulations. Metabolomic profiling was carried out in a case–control study 
of 499 autistic and 209 typically developing (TYP) children, ages 18–48  months, 
enrolled in the Children’s Autism Metabolome Project (CAMP; ClinicalTrials.
gov Identifier: NCT02548442). Fifty-four metabolites, associated with amino 
acid, organic acid, acylcarnitine and purine metabolism as well as microbiome-
associated metabolites, were quantified using liquid chromatography-tandem 
mass spectrometry. Using quantitative thresholds, the concentrations of 4 
metabolites and 149 ratios of metabolites were identified as biomarkers, each 
identifying subpopulations of 4.5–11% of the CAMP autistic population. A subset 
of 42 biomarkers could identify CAMP autistic individuals with 72% sensitivity and 
90% specificity. Many participants were identified by several metabolic biomarkers. 
Using hierarchical clustering, 30 clusters of biomarkers were created based on 
participants’ biomarker profiles. Metabolic changes associated with the clusters 
suggest that altered regulation of cellular metabolism, especially of mitochondrial 
bioenergetics, were common metabolic phenotypes in this cohort of autistic 
participants. Autism severity and cognitive and developmental impairment were 
associated with increased lactate, many lactate containing ratios, and the number 
of biomarker clusters a participant displayed. These studies provide evidence that 
metabolic phenotyping is feasible and that defined autistic subgroups can lead 
to enhanced understanding of the underlying pathophysiology and potentially 
suggest pathways for targeted metabolic treatments.
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1. Introduction

Autism Spectrum Disorder, a condition with marked etiological 
and clinical heterogeneity, has a prevalence of over 2% in the 
United States and is associated with considerable personal, family, and 
societal challenges (1–4). As autism remains a behaviorally defined 
condition, there have been extensive efforts to understand its 
underlying cellular and molecular bases and to discover clinically 
useful biomarkers (1, 2). There have been multiple efforts to stratify 
autism using molecular and behavioral-based endpoints (5–7). 
Identifying biochemical subtypes may provide a path to stratification 
that can lead to earlier diagnosis and more effective treatments (5, 
6, 8–10).

A range of biomarker modalities for the screening of autism have 
been investigated including genomic, transcriptomic, proteomic, 
neuroimaging, EEG, eye tracking and metabolic markers (11–14). 
There has been substantial interest in exploring metabolic 
underpinnings of autism from the dual perspectives of yielding 
pathophysiologic insights and in discovering biomarkers for more 
precise treatment. Previous studies have reported many potential 
metabolic alterations to be associated with autism (15–21). However, 
few of the biomarkers have been replicated (14). It is likely that the 
lack of generalizability for the majority of autism-related biomarkers 
is due to small sample sizes, autism heterogeneity, and other study 
design issues (14, 22–24). We conducted the multicenter Children’s 
Autism Metabolome Project (CAMP, ClinicalTrials.gov Identifier: 
NCT02548442) to recruit a large number of children, ages 
18–48 months, and used metabolomics-specific protocols to identify 
biomarkers and metabolic phenotypes associated with autism.

Metabolic phenotypes are biochemical signatures that reflect an 
individual’s unique metabolism and result from the interplay of one’s 
genetic background, environment, microbiome, co-occurring 
conditions, and diet (25). Due to the clinical and etiological 
heterogeneity of autism, distinct metabolic subpopulations of autism 
will likely have low prevalence. Therefore, metabolic tests based on 
biomarkers that identify autism-associated metabolic subpopulations 
will require sensitivities that detect low prevalence metabolic 
phenotypes, have high specificities to distinguish the phenotype and, 
ideally, provide new or support existing biological insights.

The current study further explores the hypothesis that the 
application of metabolite-based biomarker techniques using decision 
thresholds derived from quantitative measurements can identify 
metabolic subpopulations of autistic individuals (6, 9, 10). Our earlier 
metabolic phenotyping work provides support for this vision (16, 26). 
We now extend that work by evaluating additional metabolites and 
ratios of metabolites, especially ones related to the microbiome and 
cellular bioenergetics. The evaluation of these metabolites and ratios 
uncovered biologically plausible biomarkers that expand upon the 
biochemical processes associated with the pathophysiology of autism.

2. Materials and methods

2.1. Children’s autism metabolome project 
participants

The Children’s Autism Metabolome Project (CAMP, 
ClinicalTrials.gov Identifier: NCT02548442) study enrolled 1,102 

children, ages 18–48 months, across 8 clinical sites from August, 
2015 through January, 2018. We selected this age range because a 
consensus has emerged that a professional diagnosis of autism can 
be carried out accurately as early at 18 months of age. The centers 
included: The Children’s Hospital of Philadelphia; Cincinnati 
Children’s Hospital; The Lurie Center at Massachusetts General 
Hospital; The Melmed Center; The MIND Institute, University of 
California – Davis; Nationwide Children’s Hospital; The University 
of Arkansas for Medical Sciences; and Vanderbilt University 
Medical Center. Written informed consent from a parent or legal 
guardian was obtained and monetary compensation was provided 
to each participant. The study protocol was approved and 
monitored by Institutional Review Boards at each of the 
clinical centers.

2.1.1. Participant clinical and parental 
assessments

Each participant underwent physical and neurological 
examinations and behavioral testing performed by clinicians. Parental 
interviews and medical records were used to obtain each participant’s 
age, race, medications, and dietary information, as well as prenatal, 
perinatal, medical, and developmental histories.

2.1.2. Behavioral testing and diagnosis
The Autism Diagnostic Observation Schedule-Second Version 

(ADOS-2) assessment (27) was performed by research reliable 
clinicians on CAMP participants enrolled with a suspected diagnosis 
of autism. CAMP participants were classified as autistic if the 
ADOS-2 Module-1 or Module-2 Comparison Score (CS) was greater 
than 3 or an ADOS-2 Toddler Module Range of Concern was 
designated Mid-to-moderate or Moderate-to-severe. ADOS-2 
comparison severity scores (CSS) were calculated for the Social 
Affect (SA) and Restrictive, Repetitive Behavior (RBB) scores for 
participants administered Module-1 or Module-2 (28). CSS scores 
were not calculated for participants administered the Toddler 
Module due to missing language ability information required to 
calculate the CSS (29). The Mullen Scales of Early Learning (MSEL) 
(30) was administered to all children enrolled in CAMP and used to 
derive a developmental quotient (DQ) based on the composite 
standard score. CAMP participants were considered typically 
developing (TYP) if the MSEL DQ was greater than 70 and the 
participant did not receive a diagnosis of developmental delay or 
autism. Only subjects with a confirmed diagnosis of ASD or TYP 
were included in this study.

2.1.3. Exclusion criteria
Enrollment was limited to one child per household to minimize 

genetic or family environmental effects. Children participating in 
other clinical studies could not have used any investigational agent 
within 30 days of participation. Children were excluded from the 
study if they were previously diagnosed with a genetic condition such 
as Fragile X syndrome, Rett syndrome, Down syndrome, tuberous 
sclerosis, or inborn errors of metabolism. Participants with fetal 
alcohol syndrome, serious neurological disorders, metabolic, 
psychiatric, cardiovascular, or endocrine system disorders were also 
excluded. Participants exhibiting acute signs of illness within 2 weeks 
of enrollment such as vomiting, diarrhea, fever, cough, or ear infection 
were rescheduled.
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2.2. Phlebotomy and preanalytical 
specimen handling procedures

Blood was collected from participants who had not eaten for at 
least 12 h by venipuncture into 6 mL sodium heparin tubes placed on 
wet ice (16, 26). Plasma was obtained after centrifugation (1,200 g for 
10 min at room temperature) and stored at −80°C within 60 min of 
the blood draw. Hemolysis of samples was measured using 
spectrophotometry of the plasma (31). Plasma from hemolyzed 
samples with hemoglobin >600 mg/dL were excluded from 
metabolomics analyses and concentration values for xanthine, uric 
acid, or hypoxanthine were omitted when hemoglobin exceeded 
300 mg/dL (26).

2.3. Quantitative liquid chromatography—
tandem mass spectrometry analysis

Three quantitative LC–MS/MS methods measuring 54 small 
molecule metabolites were performed in a CLIA-certified laboratory. 
The methods were analytically validated in compliance with FDA and 
CLSI guidance for bioanalytical method validation (32, 33). 
Quantification of analytes was performed using an Agilent Technologies 
G6490 triple quadrupole mass spectrometer. Detailed information 
about the sample preparation, detection, and quantification of 
metabolites can be found in the Supplemental Data Sheet. Analyte 
measurements below the lower limit of quantification (LLOQ) or above 
the upper limit of quantification (ULOQ) values were replaced with 
90% of the LLOQ or 110% of the ULOQ value.

2.4. Metabolomics participant sample set

CAMP enrolled 1,102 participants and 916 met the inclusion and 
exclusion criteria described above (Supplementary Figure 1). Of these, 
608 received a diagnosis of autism and 214 were considered TYP. The 
participant sample set was established after removing 32 autistic and 
4 TYP samples that were hemolyzed, 77 autistic and 1 TYP 
participants’ samples that failed LC–MS/MS acquisitions, and 94 
participants with developmental delay (DD) without autism. The final 
sample set contained 708 participant samples from 499 autistic and 
209 TYP children.

2.5. Metabolomic data analysis

We measured the concentrations of 54 metabolites and also 
evaluated the ratios of these metabolites (Supplementary Table 1). 
Metabolite ratio analysis can detect changes or reveal biological 
processes that may not be discerned by individual metabolites (34). 
For example, the concentrations of metabolites in a metabolic reaction 
sequence that has a minimal, but physiologically relevant, alteration 
of function of an enzyme or transporter may not show apparent 
alterations of the metabolites of that pathway. However, if the 
concentration of a metabolite that is distal to the metabolic reaction 
is expressed as a ratio to a metabolite that is proximal to the metabolic 
reaction, that ratio may reveal a change in that pathway that could 
otherwise go undetected. In addition, ratios of the concentration of 

metabolites can provide a normalization effect that reduces variation 
due to unrelated biological or analytical sources leading to higher 
specificity in diagnostic analyses (34). Clinical applications of 
metabolite ratio analysis include use in newborn screening for some 
inherited disorders of amino acid and organic acid metabolism and of 
mitochondrial fatty acid beta-oxidation (35, 36). Because of the 
benefits of ratio analysis, metabolite ratios are also utilized in 
association analyses with genetic variants and phenotypes to identify 
the metabolic underpinnings of more complex, multifactorial 
biological processes (37–39).

The metabolite ratios were generated from all unique 
combinations of the metabolites except 3-carboxy-4-methyl-5-propyl-
2-furanpropanoic acid (CMPF), 4-ethylphenylsulfate (4-EPS) and 
dodecanedioic acid where 90% of the measurements were below the 
LLOQ. To create uniform visualization of metabolite ratios, the 
numerator and denominator were selected to yield a ratio with values 
that are greater than the biomarker threshold (see Biomarker 
Analysis). The concentrations of each metabolite or ratio of 
metabolites values were log base 2 transformed to reduce skewness 
and standardized (μ = 0, σ = 1) by subtracting the mean and dividing 
by the standard deviation prior to analyses. Participants’ metabolite 
measurements with missing data were omitted from analysis reducing 
the number of samples analyzed for a test statistic or imputed with the 
median value when missing values are not allowed by a test statistic. 
Analyses were conducted using R version 4.1.0 (40).

2.6. Biomarker analysis

Receiver operator curve (ROC) analysis was used to select a 
biomarker value threshold (Figure 1) that maximized the percentage 
of autistic participants at a sensitivity above 4.5% when exceeded (26). 
The performance metrics were estimated using 4-fold cross-validation, 
repeated 50 times, stratified by participant sex, age, and diagnosis. This 
method of cross-validation trains and tests a model four times using 
independent sample sets, based on a training set of 75% and a test set 
of 25% of the samples, with model performance assessed as the 
average test set performance across repeats. Metabolites and ratios of 
metabolites were considered an autism-associated biomarker if the 
average performance had a sensitivity of at least 4.5% (indicating a 
subpopulation of at least 4.5% of the autism study participants that 
were biomarker-positive) and the proportion of the biomarker-
positive (PMP) population of at least 90% autistic individuals 
(equivalent to the positive predictive value (PPV) of 90% within the 
CAMP study population prevalence). In addition to the sensitivity and 
PMP criteria, the permutation-based test statistic was significant at a 
false discovery rate adjusted p-value <0.1 (16, 26).

The final model thresholds were set using the entire study set of 
CAMP autism and TYP participants. These thresholds were used to 
generate participant biomarker outcome profiles by scoring a 
participant positive or biomarker negative for each biomarker. CAMP 
participant biomarker profiles were used to cluster the biomarkers, 
determine the prevalence of biomarker clusters in CAMP, and 
comparisons based on biomarker positive and negative populations. 
An overview of the methods used for biomarker selection and creating 
participant biomarker profiles is presented in Supplementary Figure 2. 
Optimization of biomarkers for identification of a likelihood of autism 
was performed using the process described previously (26).
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2.7. Clustering analysis

Clustering was performed to reduce the complexity of the 
biomarkers by aggregating related biomarkers or biomarker clusters 
into groups. Hierarchical complete-linkage clustering of the 
participant biomarker outcome profiles was performed using the 
Jaccard distance based on scoring a biomarker outcome as 
0 = negative and 1 = positive. The optimal number of biomarker 
clusters was estimated using the maximum value of the average 
silhouette width cluster validation index over a range of 5 to 50 
clusters. The biomarker clusters were further evaluated by clustering 
the fold changes of metabolites by hierarchical complete-linkage 
clustering using a distance matrix based on the Pearson correlation 
coefficients (|1-r|) of the metabolite fold changes. The biomarker 
clusters dendrogram was cut based on similar patterns of fold 
changes for a subset of metabolites (see Results). Clustering was 
performed using the R packages ComplexHeatmap (41) and 
NbClust (42).

2.8. Participant phenotypic and 
demographic information

CAMP participant phenotypic and demographic information 
were based on physical and neurological examinations and 
behavioral testing performed by clinicians as well as a parental 
questionnaire. CAMP information from autistic and/or TYP children 
related to demographic information, diet, medications, behavioral 
assessments, or co-occurring conditions were selected for association 
analysis. The selected information was filtered to remove questions 
missing responses in more than 10% of autistic participants or that 
had an identical response in >98% of participants. The percent of 
ideal body weight (IBW) was based on the method of Traub and 
Johnson (43).

2.9. Association analyses

Association analysis of the biomarker values, biomarker defined 
subpopulations and the number of biomarker clusters to the CAMP 
demographic or phenotypic variables of autistic children was 
performed. To test for associations using biomarker values or the 
number of biomarker clusters, partial Spearman’s correlation 
coefficients rho (ρ) with age as a covariate were used when a 
demographic or phenotypic variable was continuous and a Kruskal-
Wallis test was used when the metadata variable was categorical. 
Response wise Wilcoxon rank sum tests were used as post hoc tests for 
the Kruskal-Wallis tests. Association analysis between biomarker 
positive and negative populations and CAMP metadata was 
performed using Fisher exact tests for categorical variables and Welch 
t-tests for continuous metadata variables. Post hoc tests for Fisher 
exact tests of categorical metadata variables were performed by 
creating a dichotomous response variable for each response of the 
categorical variable followed by a response wise Fisher exact test. 
Effect sizes were reported using Cohen’s d for Welch t-tests, r statistic 
for Wilcoxon independent two sample tests, bias corrected Crammer’s 
V or odds ratios for Fisher’s Exact tests, and rank eta squared (η2) for 
Kruskal-Wallis tests. False discovery rate corrections (adj. p-value) 
were performed to control for multiple comparison testing (44). 
Partial correlations were calculated using the ppcor R package (45).

3. Results

3.1. CAMP study participant population

Plasma samples from 708 CAMP participants corresponding to 
499 autistic and 209 typically developing children were utilized in this 
study. The autistic population was 2.5 months older than the TYP 
population (p-value <0.05, Table 1). The autistic population also had 

FIGURE 1

Example of an autism-associated biomarker of a metabolic subpopulation. Scatter plot of the ratio of the metabolites decanoylcarnitine/carnitine with 
the threshold used to create a subpopulation of autistic individuals that is largely distinct from the TYP population. The threshold is represented as a red 
horizontal line used to separate the CAMP population into biomarker-positive (red) and biomarker-negative (black) participants. The threshold is set to 
maximize the percentage of autistic individuals in the subpopulation, maintaining a minimum of 4.5% of the CAMP autistic population above the 
threshold. In this example, the autism-associated subpopulation contains 7.3% of the CAMP autistic population and 1% of the TYP population; the 
proportion of autistic individuals (PMP-ASD) is 95%.
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a higher proportion of males (79% versus 59%, Table 1). Asians and 
those who did not specify a race were overrepresented and Black or 
African Americans were underrepresented in the autistic population 
(Table 1). Other demographic factors found in Table 1 were balanced 
between the autistic and TYP populations. Parental interviews, 
medical records, and assessments by clinicians were used to evaluate 
co-occurring conditions associated with autism in the CAMP 
population as summarized in Supplementary Table 2.

3.2. Identification of metabolic biomarkers 
of autism-associated subpopulations

We quantified 54 plasma metabolites comprised of organic and 
amino acids, acylcarnitines, purines and microbiome-associated 
metabolites that have been of interest in autism research (15–17, 20, 26, 
46, 47) (Supplementary Table 1). We also evaluated 1,275 unique ratios 

of these metabolites. Our aim was to test if a quantitative threshold of the 
concentration of a metabolite or the value of a ratio of metabolites could 
serve as a biomarker of an autism-associated subpopulation (Figure 1). 
Of the metabolites and ratios of metabolites that were examined, 153 
autism-associated biomarkers were identified. The biomarkers included 
4 individual metabolites and 149 ratios of metabolites 
(Supplementary Table 3). Each biomarker identified a subpopulation that 
contained between 4.5% and 11% of the CAMP study autistic population. 
The subpopulations were comprised of 90–100% autistic participants. 
One or more biomarkers identified 414 (83%) of the CAMP study 
autistic participants. The most frequent metabolites to appear as 
biomarker numerators or denominators were lactate, carnitine, pyruvate, 
leucine, glycine, octanoylcarnitine, citrate, 4-hydroxyproline, 
phenylalanine, and 2-ketoglutarate. The metabolites 3-aminoisobutyric 
acid, serotonin, inosine, 3-indoxyl sulfate, 4-ethylphenyl sulfate, CMPF, 
dodecanedioic acid, hydroxybutyrylcarnitine, indoleacetic acid, 
indolelactic acid and p-cresol sulfate were not identified as biomarkers.

3.3. Clusters of biomarkers

An autistic participant is often identified by more than one of the 
153 biomarkers (median 6 biomarkers, range 1–62, Figure  2, 
columns). The identification of an individual by multiple biomarkers 
suggested that the biomarkers may be identifying related metabolic 
processes (Supplementary Table 4). To explore this hypothesis and 
reduce complexity of the biomarkers, the biomarkers that often 
co-identify participants were grouped together using hierarchical 
clustering (Figure 2 rows). The 153 biomarkers formed 30 clusters; 23 
contained 2 to 40 biomarkers and 7 clusters each consisted of 1 
biomarker (Figure 2 rows, Supplementary Table 5). The biomarker 
clusters ↑Glycine, ↑Ornithine, ↑Gly↓BCAA, ↓Leucine, ↑LacPyr, 
↑LacPyr↓GlyAsp, ↓aKG1, ↓Urate, and Arg/4hyp contain additional 
metabolites and ratios of metabolites that were not evaluated in our 
earlier work (16, 26). New biomarker clusters include those that 
contain the metabolites malate, citrate, xanthine, hypoxanthine, 
taurine, carnitine and the indicated acylcarnitines.

The autism-associated biomarkers can either be used by themselves 
or clustered with other autism-associated biomarkers to identify autism-
associated metabolic phenotypes. The 30 biomarker clusters each 
identified subpopulations with a range of 5% to 28% of the CAMP 
autistic participants and were each comprised of 89% to 97% of autistic 
individuals (Table 2). As with individual biomarkers, participants are 
often identified by more than one biomarker cluster (median 3 biomarker 
clusters, range 1–19) with 52% of study participants identified by more 
than one biomarker cluster. The observation that different biomarker 
clusters often co-identify an individual (Supplementary Figure 3; 
Supplementary Table 6) suggests that the metabolic clusters are not 
independent of each other, i.e., there are alterations of metabolism that 
commonly occur together in the subpopulations.

3.4. Biomarker clusters exhibit patterns of 
metabolite fold changes that reveal 
autism-related metabolism

To investigate the relationship of biomarker clusters and 
metabolism, we compared the fold changes of metabolites between 

TABLE 1  CAMP population.

Metric Autistic Typical

N 499 209

Age (months)* 35.1 ± 7.8 32.6 ± 8.7

BMI 16.7 ± 2.1 17 ± 2.5

IBW (%) 101.2 ± 12.8 103.2 ± 15.1

Male (%)* 79 59.3

Native American (%) 1 0

Asian (%)* 6 1.4

Black (%)* 6.8 19.1

Pacific Islander (%) 0.2 0

Race not specified (%)* 14.6 7.7

White (%) 71.3 71.8

MSEL scores

Overall developmental 

quotient*
62.7 ± 17.3 101.7 ± 16.3

Expressive language* 28.1 ± 10.5 49.7 ± 9.5

Receptive language* 27 ± 11.4 50.5 ± 10

Fine motor* 28.4 ± 10.7 48.8 ± 10.9

Visual reception* 31.4 ± 13.6 54.1 ± 12.9

Diet and medication

Medication (%)* 66 36

Preferred diet (%)* 62 19

Special diet (%)* 16 9

ADOS-2 CSS

Comparison severity 7.1 ± 1.8 Not performed

Social affect 6.9 ± 1.7 Not performed

Restrictive repetitive 

behavior 7.8 ± 1.7 Not performed

*Indicates a comparison between the autistic and typical populations with a statistically 
significant difference (p-value < 0.05).
ADOS-2, Autism Diagnostic Observation Schedule-Second Edition; BMI, body mass index; 
IBW, percentage of ideal bodyweight; CSS, Calibrated Severity Score; MSEL, Mullen Scales of 
Early Learning.
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biomarker cluster-positive and negative participants. We evaluated the 
changes in metabolites to obtain a more precise understanding of the 
metabolic processes and pathways associated with biomarker clusters 
that could not be derived from ratios of metabolites. Metabolites with 
the greatest differences in concentrations between cluster positive and 
negative populations provide information about the influence of a 
metabolite in a biomarker cluster’s metabolic phenotype. Patterns of 
metabolite changes among the biomarker clusters can then be used to 
group biomarker clusters based on the similarity of fold changes 
across metabolites. We grouped the biomarker clusters fold changes 
and selected 7 groups of biomarker clusters based on acylcarnitines, 

branched chain amino acids, lactate, and pyruvate (Figure  3; 
Supplementary Table 7). By focusing on metabolites with the greatest 
changes and grouping the biomarker clusters, we were able to reduce 
the complexity of our analysis and obtain more meaningful 
biochemical interpretation of the biomarker clusters which are 
described below.

Four groups of biomarker clusters had different patterns of fold 
changes where increased acylcarnitines were evident among them 
(Figure  3). Group  1 consists of the ↑LacPyr, aKG/Val, 
↑LacPyr↓GlyAsp, and ↑Malate clusters and is present in 35% of 
autistic participants. The group is characterized by increases in 

FIGURE 2

Hierarchical clustering of biomarkers based on the biomarker profiles of CAMP participants. The 153 biomarkers (rows) were clustered using the 414 
CAMP autistic and 73 typically developing participants (columns) that were identified by at least one biomarker. The row names (biomarkers) are 
depicted in Supplementary Table 5. Red cells indicate when a biomarker identifies an individual within an autism-associated subpopulation (positive) 
and gray cells indicate when the biomarker does not identify an individual (negative). The heatmap rows are split into 30 clusters of related biomarkers 
(see Methods) that are designated by colored row blocks separated by white horizontal lines. The biomarker clusters were named using representative 
metabolite(s) that exhibited consistent increases (↑) or decreases (↓) in the biomarker positive relative to the biomarker negative participants. The 
column color bar at the top of the heatmap indicates the diagnosis: autism (purple) and TYP (black). The participants’ biomarker profiles (columns) 
were arranged by assigning each participant to a biomarker cluster in which their profile had the greatest number of biomarkers with a positive result.
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lactate, pyruvate, and malate, with varied increases in saturated 
medium and long chain acylcarnitines. A second pattern of fold 
changes is evident in the ↑C10C8C6 cluster of group  2 and is 
observed in 19% of the autistic participants. This cluster’s fold 
changes are characterized by strongly increased medium chain 
acylcarnitines, elevated palmitoylcarnitine and decreased 
glutamate and aspartate. The third pattern of fold changes with 
increased acylcarnitines consists of two clusters, Leu/Car and Leu/
Val, is present in 11% of participants with autism and is 
characterized by increased levels of hexanoylcarnitine, 
palmitoylcarnitine and the branched chain amino acids (BCAAs) 
and decreased carnitine.

Two groups of biomarker clusters had a pattern of fold changes with 
decreased levels of acylcarnitines (Figure 3, groups 5 and 7). The clusters 
↓Carnitine1, ↑Glycine, ↓Glutamine, ↑Arginine, ↑Gly↓BCAA, ↓Leucine, 
that together comprise 37% of the autistic participants, are characterized 
by decreased levels of the BCAAs, medium and long chain acylcarnitines 
and glutarylcarnitine, in combination with increased alanine, glycine, 
and ornithine. Another pattern of fold changes is present in 50% of 
autistic participants, shared by the ↓Urate, Lys/Gln, ↓aKG2, ↑Alanine, 
↑LacPyr↓(C6-C16), ↓C5DC, ↑Ornithine, Lys/Phe, ↓aKG1, and ↓Citrate 
clusters, had decreased medium and long chain acylcarnitines, decreased 
glutarylcarnitine, variably decreased TCA cycle metabolites and variably 
increased alanine, glycine, threonine, methionine, proline and ornithine.

The biomarker clusters ↓Hydroxyproline, ↓Carnitine2, ↑Taurine, 
Eta/Kyn, ↑TauXan↓C16, and ↑Ethanolamine in group 4 (Figure 3, 
group 4) exhibit a pattern of fold changes occurring in 40% of the 
autistic participants. Increases of aspartate, glutamate, hypoxanthine, 
xanthine, taurine, ethanolamine, lactate and pyruvate are associated 
with this cluster. A pattern of fold changes noted in a single cluster, 
Arg/4Hyp (Figure 3, group 6), shows decreased 4-hydroxyproline and 
tricarboxylic acid cycle (TCA) intermediates and increased arginine. 
These clusters do not exhibit consistent changes in the acylcarnitines.

In terms of specific metabolites, decreased free carnitine is noted 
in three clusters that appear in different groups, ↓Carnitine1, 
↓Carnitine2 and Leu/Car (Figure 3, groups 3–5). These biomarker 
clusters are observed in 26% of autistic participants. Each of these is 
associated with a distinctive metabolic profile. The first has decreased 
medium and long chain acylcarnitines and increased alanine, glycine, 
ornithine and proline. The second has increased lactate, pyruvate, 
malate and hypoxanthine and minimal changes of acylcarnitines. The 
third is characterized by increased BCAAs, hexanoylcarnitine 
and palmitoylcarnitine.

3.5. Biomarkers as a tool for screening 
metabolic differences associated with 
pediatric autism

The biomarkers use quantitative thresholds to identify potentially 
diagnostic subpopulations of the autistic participants that are 
comprised of at least 90% autistic individuals. The thresholds provide 
an opportunity for the biomarkers to be used as “tests” for biomarker 
levels that are associated with a likelihood of autism. The tests 
individually have high specificities (>98%) but low sensitivities 
(5–11%). The high specificity of these tests allows for a ‘stacking 
approach’ whereby a subset of the 153 biomarker-based tests can 
be combined into a battery of tests that increases overall test sensitivity 
for a likelihood of autism. Using a test optimization process to 
maintain a specificity of at least 90% (26), a subset of 42 biomarkers 
was selected that identified CAMP autistic participants with a 
sensitivity of 72% and specificity of 90% (Supplementary Table 8).

3.6. Associations of CAMP behavioral and 
phenotypic data with biomarker 
quantitative values

The levels of biomarkers corresponding to metabolite 
concentrations and ratios of metabolite values from autistic 

TABLE 2  Biomarker cluster information.

Biomarker 
cluster

Number of 
biomarkers

% ASD % PMP-ASD

↑LacPyr 40 27.6 90.1

↑LacPyr↓GlyAsp 4 13.3 95.7

↑Malate 3 10.1 96.2

aKG/Val 1 7.6 95.1

↑C10C8C6 16 19.3 90.5

Leu/Car 1 5.8 90.4

Leu/Val 1 6.6 91.3

↑Ethanolamine 3 13.3 93

↑Taurine 5 13 92.9

↑TauXan↓C16 2 10 94.2

↓Carnitine2 7 18.1 96.8

↓Hydroxyproline 6 12.8 88.9

Eta/Kyn 1 7.2 89.6

↑Arginine 3 11.2 91.8

↑Gly↓BCAA 8 16.2 93.1

↑Glycine 3 12 95.2

↓Carnitine1 7 15.7 95.1

↓Glutamine 2 8.2 95.3

↓Leucine 4 12.8 92.8

Arg/4hyp 1 6.7 94.2

↑Alanine 5 13 94.2

↑LacPyr↓(C6-C16) 9 18.3 93.8

↑Ornithine 4 18.2 95.8

↓aKG1 3 11.7 96.7

↓aKG2 2 11.7 93.5

↓C5DC 2 12.8 92.6

↓Citrate 6 19.3 92.3

↓Urate 2 7.8 92.9

Lys/Gln 1 5.6 94.2

Lys/Phe 1 5.7 92.7

%ASD, percentage of CAMP autistic participants (sensitivity), %PMP-ASD, percentage of 
the subpopulation that are autistic; Lac, lactate; Pyr, pyruvate, aKG, alpha-ketoglutarate; Xan, 
xanthine; Car, carnitine; BCAA, branched chain amino acid; C5DC, glutarylcarnitine; C6, 
hexanoylcarnitine; C8, octanoylcarnitine; C10, decanoylcarnitine; C16, palmitoylcarnitine. 
Eta, ethanolamine; Kyn, kynurenine; 4Hyp, 4-hydroxyproline.

https://doi.org/10.3389/fpsyt.2023.1249578
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
madina
Highlight



Smith et al.� 10.3389/fpsyt.2023.1249578

Frontiers in Psychiatry 08 frontiersin.org

participants were evaluated for associations with behavioral test 
scores, demographic factors, co-occurring conditions, diets, 
and medications.

3.6.1. Biomarker value associations with 
demographic factors and diet

The age of the participants was correlated (ρ = −0.26 to 0.15, adj. 
p-values <0.1) with 50 biomarkers primarily consisting of metabolite 
ratios containing lactate, pyruvate, a TCA intermediate, xanthine or 
hypoxanthine (Supplementary Table 9). BMI was correlated with 
Taurine/Ethanolamine (ρ = −0.15, adj. p-value = 0.02) and Alanine/2-
Ketoglutarate (ρ = 0.15, adj. p-value = 0.04) (Supplementary Table 9). 
The carnitine associated biomarkers Glycine/Carnitine (η2 = 0.02, adj. 
p-value = 0.05) and Methionine/Carnitine (η2 = 0.03, adj. 
p-value = 0.03) were increased in children with preferred diet (food 
selectivity) (Supplementary Table 10). The levels of Arginine/Tyrosine 
(η2 = 0.03, adj. p-value = 0.03) and Lactate/Tyrosine (η2 = 0.02, adj. 
p-value = 0.05) were increased in participants on special diets 
(Supplementary Table 10). The ornithine containing biomarker 

Ornithine/Phenylalanine (η2 = 0.02, adj. p-value = 0.05) was increased 
in females compared to males (Supplementary Table 10); no other 
biomarker associations with sex were noted. The ratios of the 
metabolites Glycine/Arginine (η2 = 0.04, adj. p-value = 0.03) and 
Glycine/Methionine (η2 = 0.04, adj. p-value = 0.05) exhibited lower 
levels in Asians compared to White participants 
(Supplementary Table 10). Associations of biomarkers were not 
identified for those taking medications.

3.6.2. Biomarker value associations with 
behavioral test scores

The biomarker Arginine/Tyrosine was associated with increased 
ADOS-2 CSS (ρ = 0.17, adj. p-value = 0.04) (Supplementary Table 9). 
Increased ADOS-2 RRB CSS scores were correlated with 
Ethanolamine/Kynurenine (ρ = 0.15, adj. p-value = 0.07) and Lactate/
Threonine (ρ = 0.15, adj. p-value = 0.09). MSEL DQ values are 
negatively correlated with increased lactate (ρ = −0.12, adj. 
p-value = 0.07) and 8 lactate-containing ratios (ρ = −0.16–0.12, adj. 
p-value < 0.1) and these ratios are also negatively correlated with one 

FIGURE 3

Heatmap of metabolite fold changes and grouping of the biomarker clusters. The metabolites (rows) selected for the heatmap occur as a numerator, 
denominator or individual metabolite of the biomarker clusters. The heatmap cells are fold changes (Supplementary Table 7) of the mean metabolite 
concentrations between the participants identified by a biomarker cluster (Pos) and those that were not (Neg). The dendrogram was cut based on 
similar patterns of fold changes for the acylcarnitines, branched chain amino acids, lactate, and pyruvate into seven groups of biomarker clusters, 
Groups 1–7, that are indicated at the top of the figure.
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or more scores in MSEL domains (Supplementary Table 9). Lactate, 
numerous lactate-containing-ratios, Ethanolamine/Citrate, and 
Alanine/Lysine levels are negatively correlated with MSEL receptive 
language, expressive language, and/or visual reception scores 
(Supplementary Table 9).

3.6.3. Biomarker value associations with selected 
developmental milestones and co-occurring 
conditions

The biomarker ratio Taurine/Ethanolamine (η2 = 0.02, adj. 
p-value = 0.02) was increased with delayed attainment of walking 
(Supplementary Table 10). Delayed attainment of spoken phrases was 
associated (η2 = 0.03–0.04, adj. p-value < 0.1) with increased levels of 
lactate and metabolite ratios containing lactate 
(Supplementary Table 10). A prenatal history of maternal diabetes, a 
history of delays in attainment of first word spoken, rolling or sitting, 
of developmental regression or co-occurring conditions such as 
seizures, sleep problems, gastrointestinal problems, low muscle tone, 
macrocephaly or other physical abnormalities were not associated 
with biomarkers identified in this study at an adjusted p-value <0.1 
(Supplementary Table 10).

3.7. Biomarker positive and negative 
population association analyses

The biomarker-positive autistic individuals identified by the 
individual biomarkers or biomarker clusters were tested for 
associations with CAMP autistic participants’ metadata. 
Participants identified by the biomarkers Methionine/Carnitine, 
Ornithine/Carnitine, Alanine/Tyrosine, Alanine/Phenylalanine or 
Ethanolamine/4-hydroxyproline were associated with lower DQ 
and MSEL subdomain scores (Supplementary Table 11). Individuals 
identified by Leucine and the biomarker clusters ↑LacPyr or 
↑Malate were associated with a decreased MSEL Receptive 
Language Score, but not a decrease in DQ (Supplementary Table 11). 
Participants identified by Taurine/Malate were associated with 
lower BMIs (Supplementary Table 11). Other metadata were not 
significantly associated with participants identified by an individual 
biomarker or a cluster of biomarkers at a significance threshold of 
an adjusted p-value of 0.1 (Supplementary Table 12).

3.8. The number of biomarker clusters 
that identify a participant are associated 
with increased severity of autism and 
developmental delays

The autistic participants were evaluated for associations with 
autism severity based on the ADOS-2 test scores (27) and the 
number of biomarker clusters that identify an autistic participant 
(Figures 4A–C; Supplementary Table 13). Increased ADOS-2 CSS, 
indicating more severe autism characteristics, was positively 
associated with the number of biomarker clusters (ρ = 0.14, adj. 
p-value = 0.016). The number of biomarker clusters was also 
correlated (ρ = 0.12, adj. p-value = 0.05) with more severe SA 
CSS. The number of clusters was not associated with RRB CSS 
(ρ = 0.05, adjusted p-value = 0.32). That the number of clusters 

have an association with SA CSS and lack of association with RBB 
CSS suggests that the increased autism severity associated with 
increased number of clusters is related to deficits in 
social communication.

The autistic participants with increasing numbers of biomarker 
clusters exhibited more severe developmental delays as measured 
by lower MSEL test scores (Figures 4D–H; Supplementary Table 13). 
The DQ decreased with increasing numbers of clusters (ρ = − 0.13, 
adj. p-value = 0.008). Decreased DQ was associated with a negative 
correlation of expressive (ρ = −0.14, adj. p-value = 0.005) and 
receptive language (ρ = −0.14, adj. p-value = 0.005), fine motor 
(ρ = −0.13, adj. p-value = 0.013) and visual reception (ρ = − 0.12, adj. 
p-value = 0.016) with increasing numbers of clusters.

The number of biomarker clusters was not associated (Kruskal-
Wallis test adjusted p-value > 0.1 or Spearman partial correlation 
test adjusted p-value>0.1) with age, race, BMI, diet, medications, 
sleep problems, gastrointestinal issues, food selectivity, or delayed 
attainment of early language or motor milestones 
(Supplementary Table 14). The lack of association with these factors 
raises the interesting possibility that an increased number of 
biomarker clusters is primarily associated with the severity of 
autism and reduced developmental quotients in the CAMP 
autistic population.

4. Discussion

The goal of this study was to identify metabolic biomarkers 
associated with subpopulations of autistic individuals that are 
largely absent in typically developing participants. Using 
quantitative measurements of 54 metabolites and their ratios in a 
carefully selected cohort of 499 autistic and 209 typically developing 
controls that are ages 18–48 months, we  identified 153 autism-
associated biomarkers. Clustering of the biomarkers based on 
similarities of the autistic participant’s biomarker profiles revealed 
30 clusters of biomarkers. These biomarker clusters, in turn, formed 
7 groups based on fold changes of free carnitine, selected 
acylcarnitines, the branched chain amino acids, lactate, and 
pyruvate and reveal patterns of metabolic dysregulation in autism. 
In addition, an optimized subset of the biomarkers identified 
autistic participants in the CAMP study with 72% sensitivity and 
90% specificity. It is important to note that the ASD-associated 
phenotypes identified in this study were determined in a population 
of individuals that are presumed to have idiopathic autism. The 
latter corresponds, by far, to the categorical designation of most 
people with ASD at the current time.

Central to our identification of metabolic subpopulations of 
autism is the use of quantitative thresholds of ratios of metabolites 
that can be  used as biomarkers. This type of metabolite ratio 
analysis can increase diagnostic efficacy by detecting changes not 
apparent when using an analysis of individual metabolites thereby 
providing information on biological processes that may not 
be discerned when studying only metabolite levels (34). Metabolite 
ratios have been successfully used in newborn screening for 
inherited metabolic disorders such as phenylketonuria, maple syrup 
urine disease, and certain disorders of organic acid or of 
mitochondrial fatty acid metabolism (35, 36) as well as in 
identifying metabolic underpinnings of more complex, 
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FIGURE 4

Scatter plots of the number of biomarker clusters in an individual’s biomarker profile and the ADOS-2 test scores (A–C) or the MSEL test scores (D–H) 
test scores. Each point represents the average test score at biomarker cluster number. The error bars correspond to ± the standard deviation. Black 
regression lines are fit using simple linear regression. The gray highlighted region is the 95% confidence interval of the regression model. CSS, 
composite severity score; SA, social affect calibrated severity score; RRB, restrictive repetitive behavior calibrated severity score; DQ, developmental 
quotient; RL Receptive language T-score; EL, expressive language T-score; VR, visual reception T-score; FM, fine motor T-score.
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multifactorial biological processes (37, 38). This study is an 
application of this approach for metabolic phenotyping and 
biomarker discovery in autism.

The fold changes of metabolites used to group biomarker 
clusters provide insights into the metabolic processes related to 
autism pathobiology (Figure  3). Overall, the fold change data 
indicate heterogenous patterns of altered cellular bioenergetics, 
especially mitochondrial dysregulation, associated with a majority 
of the CAMP autistic participants (Figure  5). Disturbances of 
mitochondrial biology, primarily mitochondrial bioenergetics, 
have a long history as a correlate of, and contributing factor to, the 
pathobiology of autism (48, 49). This connection to autism has 
been supported by a set of rare primary mitochondrial and nuclear 
genetic disorders that sometimes have autism as a clinical 
manifestation (48, 49). In addition, a subset of autistic people have 
strong biochemical evidence of mitochondrial dysregulation, 
especially of mitochondrial bioenergetics, although the percentages 
vary widely across studies depending on the autistic population 
studied and the biomarkers used (50). Brain neuroimaging studies 
and enzymatic, transcriptomic and proteomic analyses of the 
autistic brain further support forms of mitochondrial dysfunction 
in the central nervous system (51–57). Metabolic studies of 
cerebral organoids derived from autistic individuals also show 

decreased ATP production and mitochondrial respiratory chain 
activity (58). Because the brain has the highest mitochondrial 
energy demand of any organ, even subtle changes in mitochondrial 
energy production preferentially can affect brain function. For 
these reasons, and because of the complex nature of mitochondrial 
genetics, it has been proposed that many people with common 
neuropsychiatric disorders, including autism, have dysregulation 
of mitochondrial energy metabolism (59). The results of this study 
provide additional support for a role of altered regulation of 
mitochondrial energy metabolism in the pathobiology of autism 
(Figure 5).

The composition of biomarkers within the clusters suggests that 
multiple aspects of cellular bioenergetics are driving the clustering 
of biomarkers (Figure 5). The biomarker clusters with increased 
lactate, pyruvate, alanine, and sometimes tricarboxylic acid cycle 
(TCA) intermediates (Figure 5, group 1), suggest dysfunction of 
oxidative phosphorylation or the TCA cycle. However, the basis for 
the increased lactate and pyruvate, in some instances, may relate to 
non-mitochondrial processes such as glycolysis as is suggested by 
the absence of increased alanine and TCA intermediates noted in 
some other biomarker clusters (Figure 5, group 4); it also is possible 
that individuals in this group were substantially more agitated 
during their blood draws.

FIGURE 5

Model of the metabolic processes associated with groups of biomarker clusters. The figure represents an idealized cell and the metabolic processes 
implicated in autism pathobiology that are related to the patterns of metabolite fold changes in the 6 groups of biomarker clusters comprised of more 
than one biomarker (see Figure 3 groups 1–5, and 7). Metabolites that are elevated are depicted in red and decreased metabolites are indicated in blue 
for each of the cluster groups. For each group, the percentage of autistic CAMP children positive for at least one cluster in a group is indicated. 
Metabolite pathways (purple arrows) and redox processes (orange arrows) that relate to energy generation via mitochondrial oxidative phosphorylation 
are shown on the right side of the figure. Decreases of carnitine in 3 biomarkers clusters (↓Carnitine1, ↓Carnitine2, and Leu/Car) contained within 
groups 3–5 indicate that low carnitine may occur with different metabolic states in autism. Group 4 exhibits changes associated with increased 
glycolysis or glycogenolysis from muscular activity and the increased purines could arise from nucleoside metabolism associated with muscular 
activity. Lactate and pyruvate levels can be increased in diverse contexts. They are often increased in instances of altered function of oxidative 
phosphorylation or of the TCA cycle that are consistent with changes in Group 1 and some clusters in Group 7 that have increased lactate and 
pyruvate. Increased plasma acylcarnitines in group 2 are indicative of altered cellular bioenergetics that occurs when the capacity of complete 
mitochondrial fatty acid beta-oxidation is exceeded. Decreased acylcarnitines in the biomarker clusters associated with groups 5 and 7 likely relate to 
reduced fatty acids from dietary intake or derived from lipolysis or due to decreased fatty acid entry into the mitochondria via the long chain fatty acid 
uptake/mitochondrial CPT1/CACT/CPT2-mediated transport process. Decreased BCAAs in group 5, together with decreased acylcarnitines, may 
reflect a relative hyperinsulinemic state.
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Different patterns of plasma medium and long chain 
acylcarnitine alterations usually occurred with other biomarkers of 
mitochondrial energy metabolism (Figure 5, groups 2, 5, and 7). 
Abnormalities of subsets of plasma acylcarnitines have been 
previously observed in autism (20, 60–63). Neither high (Figure 5, 
group  2) nor low levels (Figure  5, groups 5 and 7) of plasma 
medium and long chain acylcarnitines noted in our work correlate 
with described genetic disorders of mitochondrial fatty acid or 
organic acid metabolism in humans (64). Increased plasma medium 
and long chain acylcarnitines (Figure 5, Group 2) can otherwise 
result from different processes such as increased physical activity or 
extended fasting in which the efflux of acylcarnitines exceeds the 
capacity for complete oxidation of the fatty acids (65, 66). Reduced 
levels of plasma medium and long chain acylcarnitines, seen in 
other autistic participants (Figure 5, Groups 5 and 7) can result 
from a reduced dietary intake of fatty acids or from an inhibition of 
long chain fatty acid entry into the mitochondria upon increased 
lactate and downstream inhibition of carnitine palmitoyltransferase 
1 (CPT1) activity (67).

As illustrated in Figures 2, 3, decreased free carnitine was noted 
in a subset of CAMP autistic participants. Carnitine is a central 
metabolite in the mitochondrial carnitine cycle/fatty acid oxidation 
pathway, in the transfer to mitochondria of the end products of 
peroxisomal fatty acid oxidation, and in Coenzyme A homeostasis. 
Individuals with low carnitine may have reduced carnitine 
synthesis; others may have abnormalities of carnitine intake, 
transport or loss. Previous studies indicate that both low and high 
levels of free carnitine have been associated with autism (61, 62, 
68–70). Most of the data regarding plasma free carnitine and 
autism, however, relate to low levels of free carnitine. An association 
of hypocarnitinemia with a common, X-linked variant of reduced 
carnitine synthesis has been described (69). Subsequent efforts 
using supplementation with carnitine to treat people with autism 
and carnitine deficiency has had some success (47, 71, 72). Based 
on these findings, it has been proposed that brain carnitine 
deficiency causes male-biased, nonsyndromic autism (73). A 
significant observation in our data is that people with autism and 
low plasma free carnitine are metabolically diverse and there should 
therefore be no a priori expectation that all individuals with autism 
and low free carnitine will have similar autism-related pathobiology 
or identical clinical responses to carnitine supplementation.

Increased plasma xanthine or hypoxanthine were present in the 
biomarker profiles of 19% of CAMP autistic participants (Figure 5, 
Group  4). While this appears to be  a novel finding (23, 24), 
abnormal levels of urinary hypoxanthine have been reported in 
autism and abnormal plasma and urine levels of other purines are 
noted in some rare monogenic metabolic disorders that are 
sometimes associated with autism (21, 74, 75). Clinical correlates 
of increased plasma hypoxanthine include increased muscle activity 
and hypoxia (76–79). Increased plasma xanthine and hypoxanthine 
can also occur consequent to disorders of mitochondrial oxidative 
phosphorylation or of glycogen metabolism (77). In most instances, 
increased plasma hypoxanthine is an indicator of cellular ATP 
consumption or deficit (80).

Changes in the levels of biomarkers were associated with 
behavioral test scores, demographic features, and several 
co-occurring conditions of autistic children. Increased levels of 

lactate, lactate-containing ratios, and Ethanolamine/Citrate are 
associated with both increased autism severity and decreased MSEL 
scores. Increased levels of metabolites associated with cellular 
bioenergetics have been associated with poorer cognitive and 
adaptive MSEL scores (81). Delays in attainment of some important 
developmental milestones including delays in speech and in 
walking were associated with increased lactate and lactate 
containing ratios and with increased levels of taurine/ethanolamine, 
respectively. Other co-occurring conditions evaluated in this study 
were not associated with biomarker levels. The age of participants 
was associated with biomarker levels; associations of biomarker 
levels with other demographic factors including BMI, diet, sex or 
race were minimal. The association of only a single biomarker with 
the sex of the participants was less than expected since males are 
overrepresented in ASD and sex specific genetic associations are 
reported (82).

We observed an association between the number of biomarker 
clusters autistic participants exhibited and the severity of their autism 
and developmental delays. As the number of clusters increased, there 
was also an increase in the composite ADOS-2 CSS as well as the SA 
CSS subscore but not the RBB CSS subscore. The developmental 
quotients as well as expressive and receptive language, fine motor, and 
visual reception subscales decreased with autistic individuals having 
increasing numbers of clusters. Increased severity of autism has been 
associated with increased plasma levels of energy-related metabolites 
and increased social deficits have been associated with increased 
levels of plasma lactate and glutamine (81, 83, 84). These results 
suggest that individuals with certain metabolic states may experience 
more severe autism, especially as relates to its social manifestations 
as well as developmental delays.

There are several limitations that impact the interpretation of 
the results. The study did not include neurodevelopmental disorders 
other than autism limiting the understanding of the specificity of 
biomarkers and metabolic states. The young age of the children in 
this study likely limited diagnoses of common co-occurring 
conditions in autism, thereby limiting our understanding of how 
biomarkers might relate to conditions such as anxiety and attention-
deficit/hyperactivity disorder (ADHD). We requested information 
about special diets but some relevant dietary information may not 
have been obtained. Full laboratory and genomic information were 
not available for study participants, thereby limiting other clinical 
correlations and additional understanding of underlying 
pathophysiology. The metabolic observations lack longitudinal 
measurements in the study participants which would be required 
to evaluate the stability of the biomarkers over time.

This study reveals numerous quantitative biomarkers that 
identify metabolic subpopulations of autistic individuals. These 
biomarkers have low sensitivities and high specificities that are 
individually of limited diagnostic value but, in aggregate, have 
associations with autism-related behaviors and metabolism. These 
biomarkers can be  leveraged as an adjunctive tool for early 
screening of children considered likely to attain a diagnosis of 
autism (26). Biomarker profiling in this way raises the prospect of 
focusing on the pathophysiology of different metabolic subtypes of 
autism as well as supporting decisions in therapeutic interventions 
and clinical trial management (85, 86). The biochemical processes 
associated with biomarkers may reflect an adaptation to compensate 
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for a metabolic defect, such as the apparent increase in glycolytic 
end products when some mitochondrial processes are compromised. 
Further study is required to interpret these observations. Even at 
this stage, where the understanding of the pathobiology of each of 
the biomarker clusters is incomplete, treatment of some autistic 
patients with low-risk interventions may benefit individuals with 
diverse forms of “mitochondrial autism.” For example, individuals 
with low plasma free carnitine can potentially benefit from carnitine 
supplementation. Those with branched chain amino acid 
deficiencies may benefit from BCAA supplementation. There are 
several rare monogenic disorders associated with autism whose 
metabolic phenotype includes low levels of the plasma BCAAs for 
which supplementation with BCAAs has, in some instances, 
provided various clinical, including developmental or behavioral, 
benefits (87–92). There may be benefit from carnitine or BCAA 
supplementation for some of the children with low carnitine or low 
BCAA-associated phenotypes noted in this study, although this 
requires future investigation. A combined metabolic analysis and 
targeted treatment approach such as that suggested by this study has 
the potential to address the specific biology of a child’s 
neurodevelopmental condition thereby resulting in more effective 
treatment and better outcomes.
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