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Autism Spectrum Disorder (ASD or autism) is a phenotypically and etiologically
heterogeneous condition. I[dentifying biomarkers of clinically significant metabolic
subtypes of autism could improve understanding of its underlying pathophysiology
and potentially lead to more targeted interventions. We hypothesized that the
application of metabolite-based biomarker techniques using decision thresholds
derived from quantitative measurements could identify autism-associated
subpopulations. Metabolomic profiling was carried out in a case—control study
of 499 autistic and 209 typically developing (TYP) children, ages 18—-48 months,
enrolled in the Children’'s Autism Metabolome Project (CAMP; ClinicalTrials.
gov ldentifier: NCT02548442). Fifty-four metabolites, associated with amino
acid, organic acid, acylcarnitine and purine metabolism as well as microbiome-
associated metabolites, were quantified using liquid chromatography-tandem
mass spectrometry. Using quantitative thresholds, the concentrations of 4
metabolites and 149 ratios of metabolites were identified as biomarkers, each
identifying subpopulations of 4.5-11% of the CAMP autistic population. A subset
of 42 biomarkers could identify CAMP autistic individuals with 72% sensitivity and
90% specificity. Many participants were identified by several metabolic biomarkers.
Using hierarchical clustering, 30 clusters of biomarkers were created based on
participants’ biomarker profiles. Metabolic changes associated with the clusters
suggest that altered regulation of cellular metabolism, especially of mitochondrial
bioenergetics, were common metabolic phenotypes in this cohort of autistic
participants. Autism severity and cognitive and developmental impairment were
associated with increased lactate, many lactate containing ratios, and the number
of biomarker clusters a participant displayed. These studies provide evidence that
metabolic phenotyping is feasible and that defined autistic subgroups can lead
to enhanced understanding of the underlying pathophysiology and potentially
suggest pathways for targeted metabolic treatments.
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1. Introduction

Autism Spectrum Disorder, a condition with marked etiological
and clinical heterogeneity, has a prevalence of over 2% in the
United States and is associated with considerable personal, family, and
societal challenges (1-4). As autism remains a behaviorally defined
condition, there have been extensive efforts to understand its
underlying cellular and molecular bases and to discover clinically
useful biomarkers (1, 2). There have been multiple efforts to stratify
autism using molecular and behavioral-based endpoints (5-7).
Identifying biochemical subtypes may provide a path to stratification
that can lead to earlier diagnosis and more effective treatments (5,
6,8-10).

A range of biomarker modalities for the screening of autism have
been investigated including genomic, transcriptomic, proteomic,
neuroimaging, EEG, eye tracking and metabolic markers (11-14).
There has been substantial interest in exploring metabolic
underpinnings of autism from the dual perspectives of yielding
pathophysiologic insights and in discovering biomarkers for more
precise treatment. Previous studies have reported many potential
metabolic alterations to be associated with autism (15-21). However,
few of the biomarkers have been replicated (14). It is likely that the
lack of generalizability for the majority of autism-related biomarkers
is due to small sample sizes, autism heterogeneity, and other study
design issues (14, 22-24). We conducted the multicenter Children’s
Autism Metabolome Project (CAMP, ClinicalTrials.gov Identifier:
NCT02548442) to recruit a large number of children, ages
18-48 months, and used metabolomics-specific protocols to identify
biomarkers and metabolic phenotypes associated with autism.

Metabolic phenotypes are biochemical signatures that reflect an
individual’s unique metabolism and result from the interplay of one’s
genetic background, environment, microbiome, co-occurring
conditions, and diet (25). Due to the clinical and etiological
heterogeneity of autism, distinct metabolic subpopulations of autism
will likely have low prevalence. Therefore, metabolic tests based on
biomarkers that identify autism-associated metabolic subpopulations
will require sensitivities that detect low prevalence metabolic
phenotypes, have high specificities to distinguish the phenotype and,
ideally, provide new or support existing biological insights.

The current study further explores the hypothesis that the
application of metabolite-based biomarker techniques using decision
thresholds derived from quantitative measurements can identify
metabolic subpopulations of autistic individuals (6, 9, 10). Our earlier
metabolic phenotyping work provides support for this vision (16, 26).
We now extend that work by evaluating additional metabolites and
ratios of metabolites, especially ones related to the microbiome and
cellular bioenergetics. The evaluation of these metabolites and ratios
uncovered biologically plausible biomarkers that expand upon the
biochemical processes associated with the pathophysiology of autism.

2. Materials and methods

2.1. Children’s autism metabolome project
participants

The Children’s Autism Metabolome Project (CAMP,
ClinicalTrials.gov Identifier: NCT02548442) study enrolled 1,102
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children, ages 18-48 months, across 8 clinical sites from August,
2015 through January, 2018. We selected this age range because a
consensus has emerged that a professional diagnosis of autism can
be carried out accurately as early at 18 months of age. The centers
included: The Children’s Hospital of Philadelphia; Cincinnati
Children’s Hospital; The Lurie Center at Massachusetts General
Hospital; The Melmed Center; The MIND Institute, University of
California - Davis; Nationwide Children’s Hospital; The University
of Arkansas for Medical Sciences; and Vanderbilt University
Medical Center. Written informed consent from a parent or legal
guardian was obtained and monetary compensation was provided
to each participant. The study protocol was approved and
monitored by Institutional Review Boards at each of the
clinical centers.

2.1.1. Participant clinical and parental
assessments
Each participant underwent physical and neurological
examinations and behavioral testing performed by clinicians. Parental
interviews and medical records were used to obtain each participant’s
age, race, medications, and dietary information, as well as prenatal,

perinatal, medical, and developmental histories.

2.1.2. Behavioral testing and diagnosis

The Autism Diagnostic Observation Schedule-Second Version
(ADOS-2) assessment (27) was performed by research reliable
clinicians on CAMP participants enrolled with a suspected diagnosis
of autism. CAMP participants were classified as autistic if the
ADOS-2 Module-1 or Module-2 Comparison Score (CS) was greater
than 3 or an ADOS-2 Toddler Module Range of Concern was
designated Mid-to-moderate or Moderate-to-severe. ADOS-2
comparison severity scores (CSS) were calculated for the Social
Affect (SA) and Restrictive, Repetitive Behavior (RBB) scores for
participants administered Module-1 or Module-2 (28). CSS scores
were not calculated for participants administered the Toddler
Module due to missing language ability information required to
calculate the CSS (29). The Mullen Scales of Early Learning (MSEL)
(30) was administered to all children enrolled in CAMP and used to
derive a developmental quotient (DQ) based on the composite
standard score. CAMP participants were considered typically
developing (TYP) if the MSEL DQ was greater than 70 and the
participant did not receive a diagnosis of developmental delay or
autism. Only subjects with a confirmed diagnosis of ASD or TYP
were included in this study.

2.1.3. Exclusion criteria

Enrollment was limited to one child per household to minimize
genetic or family environmental effects. Children participating in
other clinical studies could not have used any investigational agent
within 30days of participation. Children were excluded from the
study if they were previously diagnosed with a genetic condition such
as Fragile X syndrome, Rett syndrome, Down syndrome, tuberous
sclerosis, or inborn errors of metabolism. Participants with fetal
alcohol syndrome, serious neurological disorders, metabolic,
psychiatric, cardiovascular, or endocrine system disorders were also
excluded. Participants exhibiting acute signs of illness within 2 weeks
of enrollment such as vomiting, diarrhea, fever, cough, or ear infection
were rescheduled.
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2.2. Phlebotomy and preanalytical
specimen handling procedures

Blood was collected from participants who had not eaten for at
least 12h by venipuncture into 6 mL sodium heparin tubes placed on
wet ice (16, 26). Plasma was obtained after centrifugation (1,200 g for
10 min at room temperature) and stored at —80°C within 60 min of
the blood draw. Hemolysis of samples was measured using
spectrophotometry of the plasma (31). Plasma from hemolyzed
samples with hemoglobin >600mg/dL were excluded from
metabolomics analyses and concentration values for xanthine, uric
acid, or hypoxanthine were omitted when hemoglobin exceeded
300mg/dL (26).

2.3. Quantitative liquid chromatography—
tandem mass spectrometry analysis

Three quantitative LC-MS/MS methods measuring 54 small
molecule metabolites were performed in a CLIA-certified laboratory.
The methods were analytically validated in compliance with FDA and
CLSI guidance for bioanalytical method validation (32, 33).
Quantification of analytes was performed using an Agilent Technologies
G6490 triple quadrupole mass spectrometer. Detailed information
about the sample preparation, detection, and quantification of
metabolites can be found in the Supplemental Data Sheet. Analyte
measurements below the lower limit of quantification (LLOQ) or above
the upper limit of quantification (ULOQ) values were replaced with
90% of the LLOQ or 110% of the ULOQ value.

2.4. Metabolomics participant sample set

CAMP enrolled 1,102 participants and 916 met the inclusion and
exclusion criteria described above (Supplementary Figure 1). Of these,
608 received a diagnosis of autism and 214 were considered TYP. The
participant sample set was established after removing 32 autistic and
4 TYP samples that were hemolyzed, 77 autistic and 1 TYP
participants’ samples that failed LC-MS/MS acquisitions, and 94
participants with developmental delay (DD) without autism. The final
sample set contained 708 participant samples from 499 autistic and
209 TYP children.

2.5. Metabolomic data analysis

We measured the concentrations of 54 metabolites and also
evaluated the ratios of these metabolites (Supplementary Table 1).
Metabolite ratio analysis can detect changes or reveal biological
processes that may not be discerned by individual metabolites (34).
For example, the concentrations of metabolites in a metabolic reaction
sequence that has a minimal, but physiologically relevant, alteration
of function of an enzyme or transporter may not show apparent
alterations of the metabolites of that pathway. However, if the
concentration of a metabolite that is distal to the metabolic reaction
is expressed as a ratio to a metabolite that is proximal to the metabolic
reaction, that ratio may reveal a change in that pathway that could
otherwise go undetected. In addition, ratios of the concentration of
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metabolites can provide a normalization effect that reduces variation
due to unrelated biological or analytical sources leading to higher
specificity in diagnostic analyses (34). Clinical applications of
metabolite ratio analysis include use in newborn screening for some
inherited disorders of amino acid and organic acid metabolism and of
mitochondrial fatty acid beta-oxidation (35, 36). Because of the
benefits of ratio analysis, metabolite ratios are also utilized in
association analyses with genetic variants and phenotypes to identify
the metabolic underpinnings of more complex, multifactorial
biological processes (37-39).

The metabolite ratios were generated from all unique
combinations of the metabolites except 3-carboxy-4-methyl-5-propyl-
2-furanpropanoic acid (CMPF), 4-ethylphenylsulfate (4-EPS) and
dodecanedioic acid where 90% of the measurements were below the
LLOQ. To create uniform visualization of metabolite ratios, the
numerator and denominator were selected to yield a ratio with values
that are greater than the biomarker threshold (see Biomarker
Analysis). The concentrations of each metabolite or ratio of
metabolites values were log base 2 transformed to reduce skewness
and standardized (p=0, c=1) by subtracting the mean and dividing
by the standard deviation prior to analyses. Participants’ metabolite
measurements with missing data were omitted from analysis reducing
the number of samples analyzed for a test statistic or imputed with the
median value when missing values are not allowed by a test statistic.
Analyses were conducted using R version 4.1.0 (40).

2.6. Biomarker analysis

Receiver operator curve (ROC) analysis was used to select a
biomarker value threshold (Figure 1) that maximized the percentage
of autistic participants at a sensitivity above 4.5% when exceeded (26).
The performance metrics were estimated using 4-fold cross-validation,
repeated 50 times, stratified by participant sex, age, and diagnosis. This
method of cross-validation trains and tests a model four times using
independent sample sets, based on a training set of 75% and a test set
of 25% of the samples, with model performance assessed as the
average test set performance across repeats. Metabolites and ratios of
metabolites were considered an autism-associated biomarker if the
average performance had a sensitivity of at least 4.5% (indicating a
subpopulation of at least 4.5% of the autism study participants that
were biomarker-positive) and the proportion of the biomarker-
positive (PMP) population of at least 90% autistic individuals
(equivalent to the positive predictive value (PPV) of 90% within the
CAMP study population prevalence). In addition to the sensitivity and
PMP criteria, the permutation-based test statistic was significant at a
false discovery rate adjusted p-value <0.1 (16, 26).

The final model thresholds were set using the entire study set of
CAMP autism and TYP participants. These thresholds were used to
generate participant biomarker outcome profiles by scoring a
participant positive or biomarker negative for each biomarker. CAMP
participant biomarker profiles were used to cluster the biomarkers,
determine the prevalence of biomarker clusters in CAMP, and
comparisons based on biomarker positive and negative populations.
An overview of the methods used for biomarker selection and creating
participant biomarker profiles is presented in Supplementary Figure 2.
Optimization of biomarkers for identification of a likelihood of autism
was performed using the process described previously (26).
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FIGURE 1
Example of an autism-associated biomarker of a metabolic subpopulation. Scatter plot of the ratio of the metabolites decanoylcarnitine/carnitine with
the threshold used to create a subpopulation of autistic individuals that is largely distinct from the TYP population. The threshold is represented as a red
horizontal line used to separate the CAMP population into biomarker-positive (red) and biomarker-negative (black) participants. The threshold is set to
maximize the percentage of autistic individuals in the subpopulation, maintaining a minimum of 4.5% of the CAMP autistic population above the
threshold. In this example, the autism-associated subpopulation contains 7.3% of the CAMP autistic population and 1% of the TYP population; the
proportion of autistic individuals (PMP-ASD) is 95%.

2.7. Clustering analysis

Clustering was performed to reduce the complexity of the
biomarkers by aggregating related biomarkers or biomarker clusters
into groups. Hierarchical complete-linkage clustering of the
participant biomarker outcome profiles was performed using the
Jaccard distance based on scoring a biomarker outcome as
O0=negative and 1=positive. The optimal number of biomarker
clusters was estimated using the maximum value of the average
silhouette width cluster validation index over a range of 5 to 50
clusters. The biomarker clusters were further evaluated by clustering
the fold changes of metabolites by hierarchical complete-linkage
clustering using a distance matrix based on the Pearson correlation
coefficients (|1-r|) of the metabolite fold changes. The biomarker
clusters dendrogram was cut based on similar patterns of fold
changes for a subset of metabolites (see Results). Clustering was
performed using the R packages ComplexHeatmap (41) and
NbClust (42).

2.8. Participant phenotypic and
demographic information

CAMP participant phenotypic and demographic information
were based on physical and neurological examinations and
behavioral testing performed by clinicians as well as a parental
questionnaire. CAMP information from autistic and/or TYP children
related to demographic information, diet, medications, behavioral
assessments, or co-occurring conditions were selected for association
analysis. The selected information was filtered to remove questions
missing responses in more than 10% of autistic participants or that
had an identical response in >98% of participants. The percent of
ideal body weight (IBW) was based on the method of Traub and
Johnson (43).
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2.9. Association analyses

Association analysis of the biomarker values, biomarker defined
subpopulations and the number of biomarker clusters to the CAMP
demographic or phenotypic variables of autistic children was
performed. To test for associations using biomarker values or the
number of biomarker clusters, partial Spearman’s correlation
coefficients rho (p) with age as a covariate were used when a
demographic or phenotypic variable was continuous and a Kruskal-
Wallis test was used when the metadata variable was categorical.
Response wise Wilcoxon rank sum tests were used as post hoc tests for
the Kruskal-Wallis tests. Association analysis between biomarker
positive and negative populations and CAMP metadata was
performed using Fisher exact tests for categorical variables and Welch
t-tests for continuous metadata variables. Post hoc tests for Fisher
exact tests of categorical metadata variables were performed by
creating a dichotomous response variable for each response of the
categorical variable followed by a response wise Fisher exact test.
Effect sizes were reported using Cohen’s d for Welch t-tests, r statistic
for Wilcoxon independent two sample tests, bias corrected Crammer’s
V or odds ratios for Fisher’s Exact tests, and rank eta squared (n?) for
Kruskal-Wallis tests. False discovery rate corrections (adj. p-value)
were performed to control for multiple comparison testing (44).
Partial correlations were calculated using the ppcor R package (45).

3. Results

3.1. CAMP study participant population
Plasma samples from 708 CAMP participants corresponding to

499 autistic and 209 typically developing children were utilized in this

study. The autistic population was 2.5 months older than the TYP
population (p-value <0.05, Table 1). The autistic population also had

frontiersin.org


https://doi.org/10.3389/fpsyt.2023.1249578
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org

Smith et al.

TABLE 1 CAMP population.

Metric Autistic Typical
N 499 209

Age (months)* 35.1+7.8 32.6+8.7
BMI 16.7+2.1 17£2.5
IBW (%) 101.2+12.8 103.2 £ 15.1
Male (%)* 79 59.3
Native American (%) 1 0

Asian (%)* 6 1.4
Black (%)* 6.8 19.1
Pacific Islander (%) 0.2 0

Race not specified (%)* 14.6 7.7
White (%) 71.3 71.8
MSEL scores

Overall developmental

quotient* 62.7+17.3 101.7+16.3
Expressive language* 28.1+£10.5 49.7+9.5
Receptive language* 27+11.4 50.5+10
Fine motor* 28.4+10.7 48.8+£10.9
Visual reception* 31.4+13.6 54.1+12.9
Diet and medication

Medication (%)* 66 36
Preferred diet (%)* 62 19
Special diet (%)* 16 9
ADOS-2 CSS

Comparison severity 7.1+1.8 Not performed
Social affect 6.9+1.7 Not performed
Restrictive repetitive

behavior 7.8+1.7 Not performed

*Indicates a comparison between the autistic and typical populations with a statistically
significant difference (p-value<0.05).

ADOS-2, Autism Diagnostic Observation Schedule-Second Edition; BMI, body mass index;
IBW, percentage of ideal bodyweight; CSS, Calibrated Severity Score; MSEL, Mullen Scales of
Early Learning.

a higher proportion of males (79% versus 59%, Table 1). Asians and
those who did not specify a race were overrepresented and Black or
African Americans were underrepresented in the autistic population
(Table 1). Other demographic factors found in Table 1 were balanced
between the autistic and TYP populations. Parental interviews,
medical records, and assessments by clinicians were used to evaluate
co-occurring conditions associated with autism in the CAMP
population as summarized in Supplementary Table 2.

3.2. ldentification of metabolic biomarkers
of autism-associated subpopulations

We quantified 54 plasma metabolites comprised of organic and
amino acids, acylcarnitines, purines and microbiome-associated
metabolites that have been of interest in autism research (15-17, 20, 26,
46, 47) (Supplementary Table 1). We also evaluated 1,275 unique ratios
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of these metabolites. Our aim was to test if a quantitative threshold of the
concentration of a metabolite or the value of a ratio of metabolites could
serve as a biomarker of an autism-associated subpopulation (Figure 1).
Of the metabolites and ratios of metabolites that were examined, 153
autism-associated biomarkers were identified. The biomarkers included
4 individual metabolites and 149 ratios of metabolites
(Supplementary Table 3). Each biomarker identified a subpopulation that
contained between 4.5% and 11% of the CAMP study autistic population.
The subpopulations were comprised of 90-100% autistic participants.
One or more biomarkers identified 414 (83%) of the CAMP study
autistic participants. The most frequent metabolites to appear as
biomarker numerators or denominators were lactate, carnitine, pyruvate,
leucine, glycine, octanoylcarnitine, citrate, 4-hydroxyproline,
phenylalanine, and 2-ketoglutarate. The metabolites 3-aminoisobutyric
acid, serotonin, inosine, 3-indoxyl sulfate, 4-ethylphenyl sulfate, CMPE,
dodecanedioic acid, hydroxybutyrylcarnitine, indoleacetic acid,
indolelactic acid and p-cresol sulfate were not identified as biomarkers.

3.3. Clusters of biomarkers

An autistic participant is often identified by more than one of the
153 biomarkers (median 6 biomarkers, range 1-62, Figure 2,
columns). The identification of an individual by multiple biomarkers
suggested that the biomarkers may be identifying related metabolic
processes (Supplementary Table 4). To explore this hypothesis and
reduce complexity of the biomarkers, the biomarkers that often
co-identify participants were grouped together using hierarchical
clustering (Figure 2 rows). The 153 biomarkers formed 30 clusters; 23
contained 2 to 40 biomarkers and 7 clusters each consisted of 1
biomarker (Figure 2 rows, Supplementary Table 5). The biomarker
clusters 1Glycine, 1Ornithine, 1GlyJBCAA, |Leucine, 1LacPyr,
tLacPyr|GlyAsp, |aKGI, | Urate, and Arg/4hyp contain additional
metabolites and ratios of metabolites that were not evaluated in our
earlier work (16, 26). New biomarker clusters include those that
contain the metabolites malate, citrate, xanthine, hypoxanthine,
taurine, carnitine and the indicated acylcarnitines.

The autism-associated biomarkers can either be used by themselves
or clustered with other autism-associated biomarkers to identify autism-
associated metabolic phenotypes. The 30 biomarker clusters each
identified subpopulations with a range of 5% to 28% of the CAMP
autistic participants and were each comprised of 89% to 97% of autistic
individuals (Table 2). As with individual biomarkers, participants are
often identified by more than one biomarker cluster (median 3 biomarker
clusters, range 1-19) with 52% of study participants identified by more
than one biomarker cluster. The observation that different biomarker
clusters often co-identify an individual (Supplementary Figure 3;
Supplementary Table 6) suggests that the metabolic clusters are not
independent of each other, i.e., there are alterations of metabolism that
commonly occur together in the subpopulations.

3.4. Biomarker clusters exhibit patterns of
metabolite fold changes that reveal
autism-related metabolism

To investigate the relationship of biomarker clusters and
metabolism, we compared the fold changes of metabolites between
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FIGURE 2

Participant Biomarker Profiles

Diagnosis  Biomarker
M AsD W Pos
| G . NEG

Hierarchical clustering of biomarkers based on the biomarker profiles of CAMP participants. The 153 biomarkers (rows) were clustered using the 414
CAMP autistic and 73 typically developing participants (columns) that were identified by at least one biomarker. The row names (biomarkers) are
depicted in Supplementary Table 5. Red cells indicate when a biomarker identifies an individual within an autism-associated subpopulation (positive)
and gray cells indicate when the biomarker does not identify an individual (negative). The heatmap rows are split into 30 clusters of related biomarkers
(see Methods) that are designated by colored row blocks separated by white horizontal lines. The biomarker clusters were named using representative
metabolite(s) that exhibited consistent increases (1) or decreases (l) in the biomarker positive relative to the biomarker negative participants. The
column color bar at the top of the heatmap indicates the diagnosis: autism (purple) and TYP (black). The participants’ biomarker profiles (columns)
were arranged by assigning each participant to a biomarker cluster in which their profile had the greatest number of biomarkers with a positive result.

tLacPyr

tLacPyr|GlyAsp

tMalate
aKG/Val

1C10C8C6

Leu/Car
Leu/Val

tEthanolamine
1Taurine
1TauXan|C16
|Carnitine2

|Hydroxyproline
Eta/Kyn

tArginine

1Gly|BCAA
1Glycine

|Carnitine1

|Glutamine
lLeucine
Arg/4hyp
tAlanine

1LacPyr|(C6-C16)

tOrnithine
laKG1

1aKG2
1C5DC

|Citrate

biomarker cluster-positive and negative participants. We evaluated the
changes in metabolites to obtain a more precise understanding of the
metabolic processes and pathways associated with biomarker clusters
that could not be derived from ratios of metabolites. Metabolites with
the greatest differences in concentrations between cluster positive and
negative populations provide information about the influence of a
metabolite in a biomarker cluster’s metabolic phenotype. Patterns of
metabolite changes among the biomarker clusters can then be used to
group biomarker clusters based on the similarity of fold changes
across metabolites. We grouped the biomarker clusters fold changes
and selected 7 groups of biomarker clusters based on acylcarnitines,
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branched chain amino acids, lactate, and pyruvate (Figure 3;
Supplementary Table 7). By focusing on metabolites with the greatest
changes and grouping the biomarker clusters, we were able to reduce
the complexity of our analysis and obtain more meaningful
biochemical interpretation of the biomarker clusters which are
described below.

Four groups of biomarker clusters had different patterns of fold
changes where increased acylcarnitines were evident among them
(Figure 3). Group 1 consists of the ftLacPyr, aKG/Val,
tLacPyr]GlyAsp, and TMalate clusters and is present in 35% of
autistic participants. The group is characterized by increases in
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TABLE 2 Biomarker cluster information.

Biomarker Number of % ASD | % PMP-ASD
cluster biomarkers

1LacPyr 40 27.6 90.1
tLacPyr|GlyAsp 4 13.3 95.7
1Malate 3 10.1 96.2
aKG/Val 1 7.6 95.1
1C10C8C6 16 19.3 90.5
Leu/Car 1 5.8 90.4
Leu/Val 1 6.6 91.3
1Ethanolamine 3 133 93
TTaurine 5 13 929
1TauXan|C16 2 10 94.2
JCarnitine2 7 18.1 96.8
|Hydroxyproline 6 12.8 88.9
Eta/Kyn 1 7.2 89.6
TArginine 3 11.2 91.8
1Gly|BCAA 8 16.2 93.1
1Glycine 3 12 95.2
JCarnitinel 7 15.7 95.1
1 Glutamine 2 8.2 95.3
JLeucine 4 12.8 92.8
Arg/4hyp 1 6.7 94.2
1Alanine 5 13 94.2
tLacPyr](C6-C16) 9 18.3 93.8
1Ornithine 4 18.2 95.8
1aKGl 3 11.7 96.7
1aKG2 2 11.7 935
1C5DC 2 12.8 92.6
|Citrate 6 19.3 92.3
JUrate 2 7.8 929
Lys/Gln 1 5.6 94.2
Lys/Phe 1 5.7 92.7

%ASD, percentage of CAMP autistic participants (sensitivity), %PMP-ASD, percentage of
the subpopulation that are autistic; Lac, lactate; Pyr, pyruvate, aKG, alpha-ketoglutarate; Xan,
xanthine; Car, carnitine; BCAA, branched chain amino acid; C5DC, glutarylcarnitine; C6,
hexanoylcarnitine; C8, octanoylcarnitine; C10, decanoylcarnitine; C16, palmitoylcarnitine.
Eta, ethanolamine; Kyn, kynurenine; 4Hyp, 4-hydroxyproline.

lactate, pyruvate, and malate, with varied increases in saturated
medium and long chain acylcarnitines. A second pattern of fold
changes is evident in the 1C10C8C6 cluster of group 2 and is
observed in 19% of the autistic participants. This cluster’s fold
changes are characterized by strongly increased medium chain
acylcarnitines, elevated palmitoylcarnitine and decreased
glutamate and aspartate. The third pattern of fold changes with
increased acylcarnitines consists of two clusters, Leu/Car and Leu/
Val, is present in 11% of participants with autism and is
characterized by increased levels of hexanoylcarnitine,
palmitoylcarnitine and the branched chain amino acids (BCAAs)

and decreased carnitine.
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Two groups of biomarker clusters had a pattern of fold changes with
decreased levels of acylcarnitines (Figure 3, groups 5 and 7). The clusters
| Carnitinel, 1Glycine, | Glutamine, 1 Arginine, 1Gly|BCAA, |Leucine,
that together comprise 37% of the autistic participants, are characterized
by decreased levels of the BCAAs, medium and long chain acylcarnitines
and glutarylcarnitine, in combination with increased alanine, glycine,
and ornithine. Another pattern of fold changes is present in 50% of
autistic participants, shared by the | Urate, Lys/Gln, |aKG2, 1 Alanine,
tLacPyr|(C6-C16), | C5DC, 1Ornithine, Lys/Phe, |aKG1, and | Citrate
clusters, had decreased medium and long chain acylcarnitines, decreased
glutarylcarnitine, variably decreased TCA cycle metabolites and variably
increased alanine, glycine, threonine, methionine, proline and ornithine.

The biomarker clusters | Hydroxyproline, | Carnitine2, 1 Taurine,
Eta/Kyn, 1TauXan|C16, and tEthanolamine in group 4 (Figure 3,
group 4) exhibit a pattern of fold changes occurring in 40% of the
autistic participants. Increases of aspartate, glutamate, hypoxanthine,
xanthine, taurine, ethanolamine, lactate and pyruvate are associated
with this cluster. A pattern of fold changes noted in a single cluster,
Arg/4Hyp (Figure 3, group 6), shows decreased 4-hydroxyproline and
tricarboxylic acid cycle (TCA) intermediates and increased arginine.
These clusters do not exhibit consistent changes in the acylcarnitines.

In terms of specific metabolites, decreased free carnitine is noted
in three clusters that appear in different groups, |Carnitinel,
|Carnitine2 and Leu/Car (Figure 3, groups 3-5). These biomarker
clusters are observed in 26% of autistic participants. Each of these is
associated with a distinctive metabolic profile. The first has decreased
medium and long chain acylcarnitines and increased alanine, glycine,
ornithine and proline. The second has increased lactate, pyruvate,
malate and hypoxanthine and minimal changes of acylcarnitines. The
third is characterized by increased BCAAs, hexanoylcarnitine
and palmitoylcarnitine.

3.5. Biomarkers as a tool for screening
metabolic differences associated with
pediatric autism

The biomarkers use quantitative thresholds to identify potentially
diagnostic subpopulations of the autistic participants that are
comprised of at least 90% autistic individuals. The thresholds provide
an opportunity for the biomarkers to be used as “tests” for biomarker
levels that are associated with a likelihood of autism. The tests
individually have high specificities (>98%) but low sensitivities
(5-11%). The high specificity of these tests allows for a ‘stacking
approach’ whereby a subset of the 153 biomarker-based tests can
be combined into a battery of tests that increases overall test sensitivity
for a likelihood of autism. Using a test optimization process to
maintain a specificity of at least 90% (26), a subset of 42 biomarkers
was selected that identified CAMP autistic participants with a
sensitivity of 72% and specificity of 90% (Supplementary Table 8).

3.6. Associations of CAMP behavioral and
phenotypic data with biomarker
quantitative values

The levels of biomarkers corresponding to metabolite
concentrations and ratios of metabolite values from autistic
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Groups 1-7, that are indicated at the top of the figure.
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Biomarker Clusters

Heatmap of metabolite fold changes and grouping of the biomarker clusters. The metabolites (rows) selected for the heatmap occur as a numerator,
denominator or individual metabolite of the biomarker clusters. The heatmap cells are fold changes (Supplementary Table 7) of the mean metabolite
concentrations between the participants identified by a biomarker cluster (Pos) and those that were not (Neg). The dendrogram was cut based on
similar patterns of fold changes for the acylcarnitines, branched chain amino acids, lactate, and pyruvate into seven groups of biomarker clusters,

participants were evaluated for associations with behavioral test
scores, demographic factors, co-occurring conditions, diets,
and medications.

3.6.1. Biomarker value associations with
demographic factors and diet

The age of the participants was correlated (p=—0.26 to 0.15, adj.
p-values <0.1) with 50 biomarkers primarily consisting of metabolite
ratios containing lactate, pyruvate, a TCA intermediate, xanthine or
hypoxanthine (Supplementary Table 9). BMI was correlated with
Taurine/Ethanolamine (p = —0.15, adj. p-value =0.02) and Alanine/2-
Ketoglutarate (p=0.15, adj. p-value=0.04) (Supplementary Table 9).
The carnitine associated biomarkers Glycine/Carnitine (17>=0.02, adj.
p-value=0.05) (7*=0.03, adj.
p-value=0.03) were increased in children with preferred diet (food

and Methionine/Carnitine

selectivity) (Supplementary Table 10). The levels of Arginine/Tyrosine
(77=0.03, adj. p-value=0.03) and Lactate/Tyrosine (1>=0.02, adj.
p-value=0.05) were increased in participants on special diets
(Supplementary Table 10). The ornithine containing biomarker
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Ornithine/Phenylalanine (17>=0.02, adj. p-value =0.05) was increased
in females compared to males (Supplementary Table 10); no other
biomarker associations with sex were noted. The ratios of the
metabolites Glycine/Arginine (7°=0.04, adj. p-value=0.03) and
Glycine/Methionine (7>=0.04, adj. p-value=0.05) exhibited lower
White
(Supplementary Table 10). Associations of biomarkers were not

levels in  Asians compared to participants

identified for those taking medications.

3.6.2. Biomarker value associations with
behavioral test scores

The biomarker Arginine/Tyrosine was associated with increased
ADOS-2 CSS (p=0.17, adj. p-value=0.04) (Supplementary Table 9).
Increased ADOS-2 RRB CSS scores were correlated with
Ethanolamine/Kynurenine (p =0.15, adj. p-value=0.07) and Lactate/
Threonine (p=0.15, adj. p-value=0.09). MSEL DQ values are
negatively correlated with increased lactate (p=-0.12, adj.
p-value=0.07) and 8 lactate-containing ratios (p=-0.16-0.12, adj.
p-value<0.1) and these ratios are also negatively correlated with one
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or more scores in MSEL domains (Supplementary Table 9). Lactate,
numerous lactate-containing-ratios, Ethanolamine/Citrate, and
Alanine/Lysine levels are negatively correlated with MSEL receptive
language, expressive language, and/or visual reception scores
(Supplementary Table 9).

3.6.3. Biomarker value associations with selected
developmental milestones and co-occurring
conditions

The biomarker ratio Taurine/Ethanolamine (°=0.02, adj.
p-value=0.02) was increased with delayed attainment of walking
(Supplementary Table 10). Delayed attainment of spoken phrases was
associated (17°=0.03-0.04, adj. p-value <0.1) with increased levels of
lactate and  metabolite  ratios containing  lactate
(Supplementary Table 10). A prenatal history of maternal diabetes, a
history of delays in attainment of first word spoken, rolling or sitting,
of developmental regression or co-occurring conditions such as
seizures, sleep problems, gastrointestinal problems, low muscle tone,
macrocephaly or other physical abnormalities were not associated
with biomarkers identified in this study at an adjusted p-value <0.1

(Supplementary Table 10).

3.7. Biomarker positive and negative
population association analyses

The biomarker-positive autistic individuals identified by the
individual biomarkers or biomarker clusters were tested for
with CAMP
Participants identified by the biomarkers Methionine/Carnitine,

associations autistic participants’ metadata.
Ornithine/Carnitine, Alanine/Tyrosine, Alanine/Phenylalanine or
Ethanolamine/4-hydroxyproline were associated with lower DQ
and MSEL subdomain scores (Supplementary Table 11). Individuals
identified by Leucine and the biomarker clusters tLacPyr or
tMalate were associated with a decreased MSEL Receptive
Language Score, but not a decrease in DQ (Supplementary Table 11).
Participants identified by Taurine/Malate were associated with
lower BMIs (Supplementary Table 11). Other metadata were not
significantly associated with participants identified by an individual
biomarker or a cluster of biomarkers at a significance threshold of

an adjusted p-value of 0.1 (Supplementary Table 12).

3.8. The number of biomarker clusters
that identify a participant are associated
with increased severity of autism and
developmental delays

The autistic participants were evaluated for associations with
autism severity based on the ADOS-2 test scores (27) and the
number of biomarker clusters that identify an autistic participant
(Figures 4A-C; Supplementary Table 13). Increased ADOS-2 CSS,
indicating more severe autism characteristics, was positively
associated with the number of biomarker clusters (p =0.14, adj.
p-value=0.016). The number of biomarker clusters was also
correlated (p=0.12, adj. p-value=0.05) with more severe SA
CSS. The number of clusters was not associated with RRB CSS
(p=0.05, adjusted p-value=0.32). That the number of clusters
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have an association with SA CSS and lack of association with RBB
CSS suggests that the increased autism severity associated with
increased number of clusters is related to deficits in
social communication.

The autistic participants with increasing numbers of biomarker
clusters exhibited more severe developmental delays as measured
by lower MSEL test scores (Figures 4D-H; Supplementary Table 13).
The DQ decreased with increasing numbers of clusters (p=— 0.13,
adj. p-value =0.008). Decreased DQ was associated with a negative
correlation of expressive (p=-0.14, adj. p-value=0.005) and
receptive language (p=-0.14, adj. p-value=0.005), fine motor
(p=-0.13, adj. p-value=0.013) and visual reception (p=— 0.12, adj.
p-value=0.016) with increasing numbers of clusters.

The number of biomarker clusters was not associated (Kruskal-
Wallis test adjusted p-value>0.1 or Spearman partial correlation
test adjusted p-value>0.1) with age, race, BMI, diet, medications,
sleep problems, gastrointestinal issues, food selectivity, or delayed
attainment of early language or motor milestones
(Supplementary Table 14). The lack of association with these factors
raises the interesting possibility that an increased number of
biomarker clusters is primarily associated with the severity of
autism and reduced developmental quotients in the CAMP

autistic population.

4. Discussion

The goal of this study was to identify metabolic biomarkers
associated with subpopulations of autistic individuals that are
largely absent in typically developing participants. Using
quantitative measurements of 54 metabolites and their ratios in a
carefully selected cohort of 499 autistic and 209 typically developing
controls that are ages 18-48 months, we identified 153 autism-
associated biomarkers. Clustering of the biomarkers based on
similarities of the autistic participant’s biomarker profiles revealed
30 clusters of biomarkers. These biomarker clusters, in turn, formed
7 groups based on fold changes of free carnitine, selected
acylcarnitines, the branched chain amino acids, lactate, and
pyruvate and reveal patterns of metabolic dysregulation in autism.
In addition, an optimized subset of the biomarkers identified
autistic participants in the CAMP study with 72% sensitivity and
90% specificity. It is important to note that the ASD-associated
phenotypes identified in this study were determined in a population
of individuals that are presumed to have idiopathic autism. The
latter corresponds, by far, to the categorical designation of most
people with ASD at the current time.

Central to our identification of metabolic subpopulations of
autism is the use of quantitative thresholds of ratios of metabolites
that can be used as biomarkers. This type of metabolite ratio
analysis can increase diagnostic efficacy by detecting changes not
apparent when using an analysis of individual metabolites thereby
providing information on biological processes that may not
be discerned when studying only metabolite levels (34). Metabolite
ratios have been successfully used in newborn screening for
inherited metabolic disorders such as phenylketonuria, maple syrup
urine disease, and certain disorders of organic acid or of
mitochondrial fatty acid metabolism (35, 36) as well as in
identifying metabolic of more

underpinnings complex,
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multifactorial biological processes (37, 38). This study is an
application of this approach for metabolic phenotyping and
biomarker discovery in autism.

The fold changes of metabolites used to group biomarker
clusters provide insights into the metabolic processes related to
autism pathobiology (Figure 3). Overall, the fold change data
indicate heterogenous patterns of altered cellular bioenergetics,
especially mitochondrial dysregulation, associated with a majority
of the CAMP autistic participants (Figure 5). Disturbances of
mitochondrial biology, primarily mitochondrial bioenergetics,
have a long history as a correlate of, and contributing factor to, the
pathobiology of autism (48, 49). This connection to autism has
been supported by a set of rare primary mitochondrial and nuclear
genetic disorders that sometimes have autism as a clinical
manifestation (48, 49). In addition, a subset of autistic people have
strong biochemical evidence of mitochondrial dysregulation,
especially of mitochondrial bioenergetics, although the percentages
vary widely across studies depending on the autistic population
studied and the biomarkers used (50). Brain neuroimaging studies
and enzymatic, transcriptomic and proteomic analyses of the
autistic brain further support forms of mitochondrial dysfunction
in the central nervous system (51-57). Metabolic studies of
cerebral organoids derived from autistic individuals also show

10.3389/fpsyt.2023.1249578

decreased ATP production and mitochondrial respiratory chain
activity (58). Because the brain has the highest mitochondrial
energy demand of any organ, even subtle changes in mitochondrial
energy production preferentially can affect brain function. For
these reasons, and because of the complex nature of mitochondrial
genetics, it has been proposed that many people with common
neuropsychiatric disorders, including autism, have dysregulation
of mitochondrial energy metabolism (59). The results of this study
provide additional support for a role of altered regulation of
mitochondrial energy metabolism in the pathobiology of autism
(Figure 5).

The composition of biomarkers within the clusters suggests that
multiple aspects of cellular bioenergetics are driving the clustering
of biomarkers (Figure 5). The biomarker clusters with increased
lactate, pyruvate, alanine, and sometimes tricarboxylic acid cycle
(TCA) intermediates (Figure 5, group 1), suggest dysfunction of
oxidative phosphorylation or the TCA cycle. However, the basis for
the increased lactate and pyruvate, in some instances, may relate to
non-mitochondrial processes such as glycolysis as is suggested by
the absence of increased alanine and TCA intermediates noted in
some other biomarker clusters (Figure 5, group 4); it also is possible
that individuals in this group were substantially more agitated
during their blood draws.
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reflect a relative hyperinsulinemic state.

Model of the metabolic processes associated with groups of biomarker clusters. The figure represents an idealized cell and the metabolic processes
implicated in autism pathobiology that are related to the patterns of metabolite fold changes in the 6 groups of biomarker clusters comprised of more
than one biomarker (see Figure 3 groups 1-5, and 7). Metabolites that are elevated are depicted in red and decreased metabolites are indicated in blue
for each of the cluster groups. For each group, the percentage of autistic CAMP children positive for at least one cluster in a group is indicated.
Metabolite pathways (purple arrows) and redox processes (orange arrows) that relate to energy generation via mitochondrial oxidative phosphorylation
are shown on the right side of the figure. Decreases of carnitine in 3 biomarkers clusters (| Carnitinel, |Carnitine2, and Leu/Car) contained within
groups 3-5 indicate that low carnitine may occur with different metabolic states in autism. Group 4 exhibits changes associated with increased
glycolysis or glycogenolysis from muscular activity and the increased purines could arise from nucleoside metabolism associated with muscular
activity. Lactate and pyruvate levels can be increased in diverse contexts. They are often increased in instances of altered function of oxidative
phosphorylation or of the TCA cycle that are consistent with changes in Group 1 and some clusters in Group 7 that have increased lactate and
pyruvate. Increased plasma acylcarnitines in group 2 are indicative of altered cellular bioenergetics that occurs when the capacity of complete
mitochondrial fatty acid beta-oxidation is exceeded. Decreased acylcarnitines in the biomarker clusters associated with groups 5 and 7 likely relate to
reduced fatty acids from dietary intake or derived from lipolysis or due to decreased fatty acid entry into the mitochondria via the long chain fatty acid
uptake/mitochondrial CPT1/CACT/CPT2-mediated transport process. Decreased BCAAs in group 5, together with decreased acylcarnitines, may
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Different patterns of plasma medium and long chain
acylcarnitine alterations usually occurred with other biomarkers of
mitochondrial energy metabolism (Figure 5, groups 2, 5, and 7).
Abnormalities of subsets of plasma acylcarnitines have been
previously observed in autism (20, 60-63). Neither high (Figure 5,
group 2) nor low levels (Figure 5, groups 5 and 7) of plasma
medium and long chain acylcarnitines noted in our work correlate
with described genetic disorders of mitochondrial fatty acid or
organic acid metabolism in humans (64). Increased plasma medium
and long chain acylcarnitines (Figure 5, Group 2) can otherwise
result from different processes such as increased physical activity or
extended fasting in which the efflux of acylcarnitines exceeds the
capacity for complete oxidation of the fatty acids (65, 66). Reduced
levels of plasma medium and long chain acylcarnitines, seen in
other autistic participants (Figure 5, Groups 5 and 7) can result
from a reduced dietary intake of fatty acids or from an inhibition of
long chain fatty acid entry into the mitochondria upon increased
lactate and downstream inhibition of carnitine palmitoyltransferase
1 (CPT1) activity (67).

As illustrated in Figures 2, 3, decreased free carnitine was noted
in a subset of CAMP autistic participants. Carnitine is a central
metabolite in the mitochondrial carnitine cycle/fatty acid oxidation
pathway, in the transfer to mitochondria of the end products of
peroxisomal fatty acid oxidation, and in Coenzyme A homeostasis.
Individuals with low carnitine may have reduced carnitine
synthesis; others may have abnormalities of carnitine intake,
transport or loss. Previous studies indicate that both low and high
levels of free carnitine have been associated with autism (61, 62,
68-70). Most of the data regarding plasma free carnitine and
autism, however, relate to low levels of free carnitine. An association
of hypocarnitinemia with a common, X-linked variant of reduced
carnitine synthesis has been described (69). Subsequent efforts
using supplementation with carnitine to treat people with autism
and carnitine deficiency has had some success (47, 71, 72). Based
on these findings, it has been proposed that brain carnitine
deficiency causes male-biased, nonsyndromic autism (73). A
significant observation in our data is that people with autism and
low plasma free carnitine are metabolically diverse and there should
therefore be no a priori expectation that all individuals with autism
and low free carnitine will have similar autism-related pathobiology
or identical clinical responses to carnitine supplementation.

Increased plasma xanthine or hypoxanthine were present in the
biomarker profiles of 19% of CAMP autistic participants (Figure 5,
Group 4). While this appears to be a novel finding (23, 24),
abnormal levels of urinary hypoxanthine have been reported in
autism and abnormal plasma and urine levels of other purines are
noted in some rare monogenic metabolic disorders that are
sometimes associated with autism (21, 74, 75). Clinical correlates
of increased plasma hypoxanthine include increased muscle activity
and hypoxia (76-79). Increased plasma xanthine and hypoxanthine
can also occur consequent to disorders of mitochondrial oxidative
phosphorylation or of glycogen metabolism (77). In most instances,
increased plasma hypoxanthine is an indicator of cellular ATP
consumption or deficit (80).

Changes in the levels of biomarkers were associated with
behavioral test scores, demographic features, and several
co-occurring conditions of autistic children. Increased levels of
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lactate, lactate-containing ratios, and Ethanolamine/Citrate are
associated with both increased autism severity and decreased MSEL
scores. Increased levels of metabolites associated with cellular
bioenergetics have been associated with poorer cognitive and
adaptive MSEL scores (81). Delays in attainment of some important
developmental milestones including delays in speech and in
walking were associated with increased lactate and lactate
containing ratios and with increased levels of taurine/ethanolamine,
respectively. Other co-occurring conditions evaluated in this study
were not associated with biomarker levels. The age of participants
was associated with biomarker levels; associations of biomarker
levels with other demographic factors including BMI, diet, sex or
race were minimal. The association of only a single biomarker with
the sex of the participants was less than expected since males are
overrepresented in ASD and sex specific genetic associations are
reported (82).

We observed an association between the number of biomarker
clusters autistic participants exhibited and the severity of their autism
and developmental delays. As the number of clusters increased, there
was also an increase in the composite ADOS-2 CSS as well as the SA
CSS subscore but not the RBB CSS subscore. The developmental
quotients as well as expressive and receptive language, fine motor, and
visual reception subscales decreased with autistic individuals having
increasing numbers of clusters. Increased severity of autism has been
associated with increased plasma levels of energy-related metabolites
and increased social deficits have been associated with increased
levels of plasma lactate and glutamine (81, 83, 84). These results
suggest that individuals with certain metabolic states may experience
more severe autism, especially as relates to its social manifestations
as well as developmental delays.

There are several limitations that impact the interpretation of
the results. The study did not include neurodevelopmental disorders
other than autism limiting the understanding of the specificity of
biomarkers and metabolic states. The young age of the children in
this study likely limited diagnoses of common co-occurring
conditions in autism, thereby limiting our understanding of how
biomarkers might relate to conditions such as anxiety and attention-
deficit/hyperactivity disorder (ADHD). We requested information
about special diets but some relevant dietary information may not
have been obtained. Full laboratory and genomic information were
not available for study participants, thereby limiting other clinical
correlations and additional understanding of underlying
pathophysiology. The metabolic observations lack longitudinal
measurements in the study participants which would be required
to evaluate the stability of the biomarkers over time.

This study reveals numerous quantitative biomarkers that
identify metabolic subpopulations of autistic individuals. These
biomarkers have low sensitivities and high specificities that are
individually of limited diagnostic value but, in aggregate, have
associations with autism-related behaviors and metabolism. These
biomarkers can be leveraged as an adjunctive tool for early
screening of children considered likely to attain a diagnosis of
autism (26). Biomarker profiling in this way raises the prospect of
focusing on the pathophysiology of different metabolic subtypes of
autism as well as supporting decisions in therapeutic interventions
and clinical trial management (85, 86). The biochemical processes
associated with biomarkers may reflect an adaptation to compensate
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for a metabolic defect, such as the apparent increase in glycolytic
end products when some mitochondrial processes are compromised.
Further study is required to interpret these observations. Even at
this stage, where the understanding of the pathobiology of each of
the biomarker clusters is incomplete, treatment of some autistic
patients with low-risk interventions may benefit individuals with
diverse forms of “mitochondrial autism.” For example, individuals
with low plasma free carnitine can potentially benefit from carnitine
supplementation. Those with branched chain amino acid
deficiencies may benefit from BCAA supplementation. There are
several rare monogenic disorders associated with autism whose
metabolic phenotype includes low levels of the plasma BCAAs for
which supplementation with BCAAs has, in some instances,
provided various clinical, including developmental or behavioral,
benefits (87-92). There may be benefit from carnitine or BCAA
supplementation for some of the children with low carnitine or low
BCAA-associated phenotypes noted in this study, although this
requires future investigation. A combined metabolic analysis and
targeted treatment approach such as that suggested by this study has
the potential to address the specific biology of a child’s
neurodevelopmental condition thereby resulting in more effective
treatment and better outcomes.
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